
Exploitation of Event-Semantics for Distributed
Publish/Subscribe Systems in Massively Multiuser Virtual

Environments

Thomas Fischer, Michael Daum, Florian Irmert, Christoph Neumann, Richard Lenz
Friedrich-Alexander University of Erlangen-Nuremberg
Institute of Computer Science 6 (Data Management)

Martensstraße 3
D-91058 Erlangen

{thomas.fischer, michael.daum, florian.irmert, christoph.neumann, richard.lenz}
@cs.fau.de

ABSTRACT
Triggered by the fast evolving technical capabilities for
implementing distributed global scale applications, online
games have grown to a huge industry in recent years. Partic-
ularly, Massive Multiuser Virtual Environments (MMVEs),
which allow for simultaneous activity of thousands of play-
ers in a virtual world, have been tremendously successful.
Current architectures, however, use centralized approaches,
which obviously do not scale beyond a certain point. Dis-
tributed event-based systems are a promising approach to
reach both, performing and scalable architectures. The po-
tential of this approach can only be fully exploited if event
semantics is used to optimize event handling. Existing ap-
proaches actually do this to some degree, but typically in a
very application specific manner. There is no generally ap-
plicable framework for classifying events according to their
relevant semantic properties. In this paper, we propose a
generally applicable classification of events as a first step on
the way to flexibly adaptable generic event management sys-
tems. We exemplify the relevance of our semantic properties
by classifying typical events in an existing MMVE. We dis-
cuss existing optimization strategies based on our semantic
classification and outline a corresponding architecture.

1. INTRODUCTION
Computer games have become part of our social culture

and grown to an important branch for the computer indus-
try. The most growing market in this area are online games
[1]. But this promising market states some unique challenges
for game designers and researchers.

MMVEs define a distributed virtual world shared by thou-
sands of participants, each represented by an avatar, who
compete and cooperate in one enormous persistent world.
This world may be a game world as in Massive Multiplayer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IDEAS10 2010, August 16-18, Montreal, QC [Canada], Editor: Bipin C.
DESAI
Copyright 2010 ACM 978-1-60558-900-8/10/08 ...$10.00.

Online Games (MMOGs), a large scale simulation or a vir-
tual world like Second Life. The design of such a living vir-
tual world requires armies of artists and the software backing
a world of such enormous dimensions must satisfy several re-
quirements, e.g.:

Consistency The virtual world of the MMVE must be con-
sistent for all participants. Every event that happens
inside this world has to be recognizable for all affected
avatars.

Availability The virtual world of a MMVE should be avail-
able 24 hours a day, 7 days a week, because users ex-
pect a high availability for the fee they pay. Therefore,
down-time and login problems may decrease or even
inhibit the success of the project.

Persistence In MMVEs, an environment that preserves
the action of its users has to be provided [2].

Interactivity Interactivity is a crucial factor of success for
MMVEs because it provides the desired experience.
Depending on the genre, avatars communicate with
each other, e.g. to give tactical orders or just for social
reasons.

Security With millions of users the likelihood of customers
trying to cheat increases.

In contrast to conventional computer games, MMVEs
must be able to maintain high quality regarding these re-
quirements even if the user-base grows beyond any predic-
tions. Therefore, scalability of an MMVEs architecture is
the crucial requirement. This states the challenge of MMVE
architectures: Preserve scalability, whilst all other require-
ments are met to the desired quality standard.

Current industry strength MMVE architectures favour a
client/server architectural style, mostly motivated by the
fear of cheats and the easy maintainability. Skibinsky
showed in [3] that this type of architecture has “high opera-
tional cost, capable of serving in the low thousands of users
in the same world and having scalability limits for future
growth”. To cope with more and more players, tremendous
effort is invested by the usage of grid approaches like in Lin-
den Lab’s Second Life 1 or the deployment of large hierar-

1http://secondlife.com



chical clusters like for the operation of CCP’s Eve Online2.
These architectures serve currently a confirmed maximum
of about 47 thousand users (Eve Online) in one persistent
virtual world [4]. They are only capable of serving such an
amount of users as long as their avatars are broadly dis-
tributed in the virtual world. When avatars start to flock,
the servers’ load reaches critical levels very fast. This prob-
lem is well known amongst users as the “crowding” problem.
As a consequence, nearly all currently available MMVEs de-
sign their virtual worlds in a way that encourages partici-
pants to distribute broadly over the whole world and try to
avoid an avatar concentration in one region.

Recent games have shown that game design and
client/server architectures alone do not suffice to solve the
challenge of scalability. Distributed systems like special-
ized Peer-to-peer (P2P) systems are a promising approach
of handling the snowballing number of players. But even in
such systems, the main challenge in handling player concen-
tration in one region is the enormous amount of messages
(events) that have to be delivered to every single player.

Existing classical multiplayer game architectures often use
a broadcast mechanism to keep the distributed world state
consistent. Ideally, all events are securely delivered and pro-
cessed in the same order nearly at the same time on all
clients. In a distributed environment, this requires an ef-
fort of O(n2), n being the participating clients of the world.
It is obvious that architectures do not scale well beyond a
certain amount of clients. Multiplayer games like Quake 3
Arena3 have shown that without any optimizations, the limit
is reached by about 64 clients, depending on the required
update rate of the game. Enabling scalability beyond that
limit states a challenge. Many recent event-dissemination
architectures for MMVEs [5, 6, 7, 8, 9] optimize the event
dissemination based on one basic idea: Exploitation of event
semantics to reduce message exchange between clients. But
to our knowledge, all existing approaches address only one
or two aspects of the semantics and propose an optimized
event-dissemination architecture for that specialized aspect.

In this paper, we provide the first steps towards a gen-
eralized approach of utilizing a comprehensive set of dif-
ferent semantic properties of events that may arise in an
MMVE to reduce the communication overhead between the
clients. This paper is organized as follows: In Section 2, we
present our semantic classification schema that introduces
dimensions along which all possible events may be classi-
fied with respect to their optimization potential. Events
that belong to the same class have similar requirements re-
garding their dissemination. In Section 3, we analyze recent
research in context of the optimization used for event dis-
semination. Based on the classification schema and the opti-
mization strategies we describe an architecture that is build
on top of a conventional overlay network and controls an op-
timized distribution of all events in Section 4. In Section 5,
we discuss our proposed approach and provide a roadmap
for its realization as well as the identification of the main
challenges for future work.

2. EVENT SEMANTICS
Events used in MMVEs feature many characteristics like

2http://www.eveonline.com/
3http://www.idsoftware.com/games/quake/
quake3-arena/

for example a spatial context in which the event is valid that
may be exploited to develop specialized architectures for
their delivery to the clients. The decision which optimization
suites best for a certain event type is a non-trivial challenge,
whose solution in our approach needs a solid model of the
events semantics. But first, the basic characteristics of event
types in MMVEs have to be discussed. When talking about
event semantics, we have to distinguish between event types
and events, which means for example “item pickup” is an
event type and “player x picks up flower y at position z” is
an corresponding event.

Events occur between the world and an avatar or between
two avatars. The world in a distributed scenario is built
by the clients. There is no central server. Therefore, the
responsibility for the entities in the world is divided amongst
the clients following a certain algorithm. For example, the
world is divided in cells and one client is chosen to act as a
server for this cell. In a distributed MMVE, all events occur
between the clients, which we call nodes in the remainder
of the paper, due to the fact that every node may act as a
client or a server depending on the event type discussed.

Another relevant aspect to consider is the frequency of
one event type. Position updates for example have a high
frequency (around 30 events per second), whilst the pickup
of an item is a unique event which only occurs from time
to time. There are also bursty events, like the usage of a
weapon, where each bullet is represented by an event.

Existing approaches concentrate on the improvement of
event types which occur with high frequency without con-
sidering all possible semantics of event types required by
MMVEs. We strive for a more generalized approach which
incorporates all relevant event types and provide the best
possible dissemination for each special type.

Such a generalized approach requires a fundamental event
model, which defines a formal description of optimizable
event types. Based on this formal description, different op-
timization strategies may be applied to the event dissem-
ination. In this section, we propose an initial identifica-
tion of event classes which may be optimized in different
ways regarding their delivery to the recipient(s) based on
the application’s requirements. We strive for a multidimen-
sional classification schema which models all aspects of per-
formance relevant event semantics. First, we introduce the
dimensions we found based on recent research. Afterwards
we exemplify the proposed dimensions by the classification
of typical event types in an existing multiplayer game.

2.1 Dimensions
The semantics of each event, which is exchanged between

clients of a virtual world, may be analyzed and a defini-
tion e.g. of the address, the priority, the relationship to
other events or the context in which this event is valid can
be deduced. In order to classify the event types properly,
we propose a multidimensional classification with orthog-
onal dimensions, as outlined in [10], to model independent
aspects of the event semantics. We define disjoint character-
istic classes for each dimension. To classify an event type, it
has to be assigned to one class along each dimension. Based
on this scheme, the class of an event type is defined as the
sum of the characteristics along each dimension. The power
of such a multidimensional class space enables optimization
of each event type along each dimension with a different
strategy in order to gain a better overall optimization foot-



print of the system, than if a fixed strategy is used for the
whole system. The dimensions proposed below, may not
exhaustively address all possible semantic properties events
can adopt, but those relevant to existing performance opti-
mization strategies, as discussed in Section 3. The following
initial dimensions are found and described with a set of ini-
tial classes:

2.1.1 Context
Each event in an MMVE has a certain context in which it

is relevant or valid. This context may be e.g. spatial, social
or defined by certain metrics [6]. In general, the context
of an event in an MMVE reduces its recipients to a certain
subset. Most optimization algorithms in this field may be
summarized under the topic Area of Interest (AoI) man-
agement [11]. For the context dimension, following initial
classes are defined:

single-target Obviously, an event with only one recipient
may be delivered directly, without, e.g, the need of a
multicast tree. An example is a private chat message
or the event “avatar A gives avatar B item X”.

multi-target Events with a multi-target context have a
defined set of explicit recipients, for example a chat
message to a group of participants who have a certain
relationship in the virtual world or an event whose re-
cipients are deduced by certain metrics. For example
all avatars, which are targetable by one’s cross-hair.

spatial An event with a spatial context is only relevant to a
subset of recipients limited by spatial constraints. This
class is a special case of the multi-target class. The
distinction is necessary, due to the special optimized
delivery a spatial context allows. An example for an
event with a spatial context is the pickup of a flower in
the virtual environment. Only clients in visual range
need to be notified of such an event.

global An event which is broadcasted to all clients of the
virtual world, without any restriction is of a global
context. These events are distributed without any op-
timization.

2.1.2 Persistency
In contrast to normal multiuser virtual environments,

MMVEs provide a persistent world, and therefore some
events like e.g. the gain of money must be persistent in
some way. Therefore we distinguish two classes for this di-
mension: transient and persistent events. There are two
major solutions for the problem to persist events: Replica-
tion of the state, to ensure enough hosts are always online
to restore the state or the storage in a centralized database
[8].

2.1.3 Synchronization
Some event types have certain temporal or causal interde-

pendencies and therefore require synchronization. For exam-
ple, a position update may have no synchronization require-
ments, due to its high update rate. An event representing
the pickup of an item from a chest on the other hand needs
defined synchronization semantics, because there are causal
interdependencies if another player also wants to pick up

this item at the same time. There are many different ap-
proaches like virtual time [12, 9], all providing different syn-
chronization semantics for different requirements. For this
dimension, we have defined certain levels of synchronization,
inspired by [13]:

weak This class of events does not need an explicit syn-
chronization algorithm. It is not crucial to the virtual
world, when and in which order an event arrives at the
addressed nodes. For example, chat messages do not
need an ensured order on each node, as their order is
not essential to the operation of the chat service.

causal Causal synchronization defines a synchronized pro-
cessing only for dependent events of an event type. In
our domain two causal events of the same event type,
generated by the same user have a defined relative or-
der that has to be ensured by the algorithm. All not
depending events of the same type may be processed
in an arbitrary order on each node. That means ex-
plicit rules, modelling the dependencies between events
of one type must be defined in this synchronization
model. For example if two avatars are engaged in com-
bat by targeting each other, their combat events have
to be ordered, whilst all combat events from not tar-
geted avatars are not causal dependent, as they have
no impact on the two engaged avatars and therefore
are not synchronized. The corresponding rule would
be the mutual targeting avatars are causal dependent.

sequential Event types with sequential synchronization
must follow two criteria: two actions of the same user
must be processed in the correct order, whilst 2 actions
of two different users must be processed on all nodes
in a globally fixed order. For example, the event types
”open chest” and ”pickup content” have such synchro-
nization requirements.

strict Strict synchronization defines, that all events of an
event type have to be processed in the same order on
all nodes. This defines a globally consistent and valid
processing order for all events of that type. An exam-
ple for such an event type is the ”death of an avatar”
event, whose order should be guaranteed.

2.1.4 Validity
Whilst synchronization describes the order of, or more

generally the relationship between events of an event type,
validity is strictly limited to one event, for example an ef-
fect on a player which is active for a certain time may be
modelled by one event with the corresponding validity. This
dimension decouples the time of the event delivery from the
time an event’s effect. E.g. events may be sent in advance
describing an effect in the future, which means the event
is valid only in a certain time interval in the future. We
distinguish three characteristic classes of validity:

interval An event type may be valid for a certain time in-
terval independent of its sending or its receive time.
For example, a certain action triggers an effect for
three minutes. With interval validity only one event is
needed.

time-point An event type has an explicit point in time, at
which events of this type are valid and to be processed.



For example, a scripted action of the world, like the
crash of an airplane may be broadcasted ahead of time.
Moreover, invalid events may be discarded to reduce
messages in the system.

unlimited Unlimited validity means, this event type has a
permanent impact on the virtual world. It must not
be lost and therefore has to be delivered.

2.1.5 Delivery
Some events must reach their destinations, while oth-

ers like position updates may have such a high frequency,
that the loss of a single event does not cause any problems.
Therefore the system may have to guarantee the delivery or
prioritize it. Depending on different delivery characteristics,
the systems may be optimized and reduce events.

guaranteed Event types with guaranteed delivery must
reach their destinations. This may for example be en-
sured by an ack protocol.

prioritized Prioritized events create a possibility to ensure
important events to be delivered, whilst optional or
non time-critical events may be delivered later.

desired This class describes pure optional delivery with no
guarantee.

2.1.6 Security
A secure event is not tempered and represents the initial

event. Especially in distributed MMVE architectures, it is
important to detect cheating clients at least. Prevention
would be the optimum, but in most cases it is too expensive
to guarantee cheat-free operation. Because of its impact on
the performance of event dissemination, we see security of
events as a semantically relevant dimension in this context.
Therefore, we defined three classes: detection, prevention
and no security.

All described dimensions provide aspects to classify events
regarding their performance-relevant semantics and as all di-
mensions are deduced from existing approaches it is possible
to optimize a system along these dimensions.

2.2 Examples of event semantics
Based on our dimensions with their characteristic classes,

an event may be characterized along each dimension. We
give some common event class examples based on an analysis
of the events used in Quake 3 Arena. An exhaustive descrip-
tion of all potential classes is not possible at this point of our
research as the analyzes of more games is needed to identify
all relevant classes of event types. Following selected event
types can be found in the Quake 3 Arena source code4 and
exemplary classified according to our classification:

Movement events have a spatial context, transient persis-
tency, causal synchronization, interval validity, desired
delivery and no security.

Jump events have a spatial context, transient persistency,
causal synchronization, interval validity, guaranteed
delivery and preventing security.

4Q3A 1.32b Source Code: http://www.idsoftware.com/
business/techdownloads/

Item Pickup events have a spatial context, persistent per-
sistency, sequential synchronization, unlimited valid-
ity, guaranteed delivery and preventing security.

Team Message events have a multi-target context, tran-
sient persistency, weak synchronization, unlimited va-
lidity, desired delivery and no security.

These examples show the variety of optimization potential
each event type has and indicate the adequateness of our di-
mensions. The concrete classifications in a game may vary
in detail, for example depending on the intended tolerance
of the consistency in the virtual world. The consistency is
mainly controlled by the synchronization semantics, but also
influenced by physical constraints like network latency. This
makes it even more important to provide different strategies
optimized to the special requirements of each event type.
Selected optimization strategies addressing different dimen-
sions of our multidimensional classification schema are dis-
cussed in the next section.

3. OPTIMIZATION STRATEGIES
In recent years many promising approaches for optimiza-

tion of event dissemination under exploitation of event se-
mantics have been developed. We discuss selected ap-
proaches and categorize their optimization potential accord-
ing to our multidimensional classification. It is important to
point out that each of the mentioned approaches only ad-
dresses one or two of the introduced dimensions and there-
fore does not cope the full optimization potential event types
may have.

3.1 Context optimization
Most work has been done in the field of context optimiza-

tion, due to the fact that in a virtual world each avatar has
a certain Area of Interest (AoI), which determines the area
the avatar gets events for. SimMud [14] introduces regions
and each region is controlled by one arbitrary node defined
by the usage of a Distributed Hash Table (DHT). Many
other approaches like [7, 19, 20] adapted this idea. VON [5]
uses voronoi diagrams to partition the space of the virtual
world. Only neighbors in the Voronoi space are directly con-
nected and form an overlay network, which optimizes AoI
messaging. Boulanger et al. [11] give an overview on the
performance characteristics of different world partitioning
algorithms like Delauny triangulation or Euclidean distance
measures, which may be adapted to distributed context opti-
mization. Müller and Gorlatc [15] propose another approach
by introducing replicated regions, which each manage a sub-
set of the entities in the whole region.

3.2 Persistency optimization
As an MMVE represents a persistent world, it is crucial

to support event types with persistent effects. Zhang et al.
[8] analyze different consistency approaches for persistence,
for example snapshot mechanisms or distance based stor-
age, which means only if a position change is greater than
a certain threshold an update to the database is performed.
Another approach is the usage of replication mechanisms like
[18] to ensure a disconnected client’s state can be restored.
Which approach is more applicable mostly depends on the
distribution architecture chosen and whether centralized el-
ements are justifiable.



Context Persistency Synchronization Validity Delivery Security
SimMud [14]

√ √

Colyseus [7]
√ √

VON [5]
√

Rokkatan [15]
√

Donnybrook [6]
√

Virtual time [12]
√

Ferretti [9]
√

Dead Reckoning [16]
√

Kabus [17]
√

Mammoth [8]
√

MiddleSIR [18]
√ √

Table 1: Approaches and their optimization in respect to the introduced dimensions

3.3 Synchronization optimization
Colyseus [7] realizes a distributed architecture with one

copy serialization for each entity in the virtual world un-
der exploitation of contextual semantics. A more strict ap-
proach is virtual time [12] which introduces a virtual time
for the virtual world and is able to keep a strict synchroniza-
tion through reordering the events by the usage of negative
events. Ferretti [9] enhances a virtual time approach by the
usage of a gossiping protocol to speed up synchronization.

3.4 Validity and delivery optimization
The optimization of these two dimensions are classical

event processing problems which may be addressed by ac-
knowledgments on protocol level or with validity checks in
each node. Specialized approaches in this field often focus
on global message reduction like dead reckoning algorithms
[16] or update frequency control, which prioritizes events to
maintain a static bandwidth consumption.

3.5 Security optimization
The most optimized case is obviously to ignore secu-

rity, but this is not feasible in the commercial sector. De-
spite common security measures like encrypting exchanged
events, some research has already been done in this field
like [17] which addresses different approaches to prevent or
detect cheating.

3.6 Multi-purpose optimization
The described approaches for each dimension show a vari-

ety of optimization ideas which all have their advantages and
drawbacks for certain specialized event types. As Table 1
shows, existing approaches are specialized only on a subset of
our proposed dimensions, but MMVE architectures have op-
timization potential along all those dimensions. Each event
type should be processed in the way, optimal for its type.
This is only possible if the existing approaches are combin-
able in a modular fashion, depending on the event type. We
strive for the exploitation of this manifold potential to take
the optimizability of event dissemination architectures one
step further. To achieve this goal, the depicted optimization
techniques must be unified in a generalized and adaptable
framework which is capable of using different event dissem-
ination strategies depending on the class of the event type.
The challenge regarding the combination and integration is
the requirement of a general model to define such dissemi-
nation algorithms, which is part of our ongoing research. In

Game

Game Engine API

Graphics
Engine

Sound
Engine

Physics
Engine

AI
Engine

Input
System

Message
System…

Hardware Abstraction Layer (DirectX, OpenGL, …)

Hardware Layer (sound card, graphics card, …)

Figure 1: Coarse Game Engine Reference Architec-
ture

the next section, we sketch a possible architecture, address-
ing the realization of such a system.

4. ARCHITECTURE
The realization of an architecture supporting adaptable

optimizations states many challenges. In this section, we
identify the required modules to implement such a frame-
work. But first brief discussion to the common architec-
tural styles of an MMVE is given. This is required as a
background in front of which a description of our architec-
ture with its design decisions can be argued. In general, an
MMVE consists of n interconnected nodes all being part of
the same virtual world. This world is described by a global
shared state, which is the sum of the states of all entities
existing in the MMVE. Each node manages an as consis-
tent as possible replica of this global state and runs a game
engine which follows an architecture as depicted in Fig. 1.
This game engine is responsible for the manipulation and
the generation of a view on the world state. Fig. 1 shows
a coarse reference architecture for such an engine. Based
on the abstraction layer provided usually by the operating
system, many subsystems are defined, each responsible for a
different task in the engine. As we concentrate on the com-
munication architecture and its optimization, when speaking
of our framework, we talk about the message subsystem and
its realization as a middleware.

Singhal and Zyda [16] identify the main technical chal-
lenge for networked virtual environments as the manage-



ment of their dynamic shared state. They also introduce
two general approaches to cope with this challenge. On the
one hand, a centralized approach may be chosen, holding all
state information on one central server. On the other hand,
all participating nodes in the MMVE may own parts of the
dynamic shared state. As motivated in Section 1 we believe
that distributed architectures will emerge as the future ar-
chitectural style for MMVEs and therefore our architecture
is based on a P2P overlay network.

The second architectural decision is the communication
model between the nodes. There are two different models to
describe the communication:

• Query Update
For the computation of a new consistent game state,
each client has to be informed of all changes of all
other clients. Therefore, each client may request the
corresponding update for its state replica. As a result,
the game performs a fairly even mixture of queries and
updates to ensure the consistency of each node’s state.
It is organized in bursts of O(n) queries followed by
O(n) updates corresponding to the update rate of the
game engine [2]. This processing style is more common
to centralized architectures.

• Publish/Subscribe
Some of the updates are only relevant for a subset of
all participants of the game. Pub-sub systems offer
a solution for topic-based optimization. Subscribers
register themselves for a special topic. If a message
appears for a topic, only subscribers of this topics are
informed. In MMVEs, the list of recipients has to be
computed because a recipient can not decide if he is a
subscriber or not.

As there are many disadvantages for query/update com-
munication in distributed environments, like the message
overhead needed per frame to issue the queries, we use a
distributed publish/subscribe messaging. Keeping the de-
fined requirements in mind, it is obvious that even in pub-
lish/subscribe systems, to ensure global consistency for the
state replicas of n nodes there is an effort of O(n2) required,
if each node is authoritative for its own avatar. To opti-
mize this effort to a reasonable level for supporting real-
time MMVEs, one or more optimization techniques as in-
troduced in Section 3 have to be applied. In our Massive
Multiuser Event InfraStructure (m2etis) project, we cur-
rently develop a framework to improve the event dissemina-
tion performance following our proposed multidimensional
classification in Section 2.

4.1 m2etis architecture
The m2etis framework strives for the implementation of a

networking middleware for MMVEs which integrates seam-
lessly as the messaging system into the reference architecture
for game engines (cf. Fig. 1). It is designed around the cen-
tral multidimensional semantic event classification, which
makes the framework adaptable to many scenarios. Each
MMVE has to provide a semantic classification of its event
types according to our schema. Based on the definition of
the type itself and its semantic properties the m2etis system
decides which algorithm is chosen to disseminate each event
type across the participating nodes. One of the core benefits
of this architecture is the separation of the game engine and

the message dissemination architecture, which reduces the
complexity in the game engine significantly.

Fig. 2 shows the modules of our architecture. The sys-
tem consists of 3 parts: The m2etis transformer responsible
for mediation between game engine and the internal event
model, the m2etis optimizer which optimizes the event dis-
semination and creates the according optimized channels for
its publish/subscribe system and the underlying P2P over-
lay network based on Chimera [21] a Tapestry advancement,
which provides the routing capabilities for event distribu-
tion.

m2etis transformer The transformer component consists
of the formalized semantic model based on the mul-
tidimensional classification given in Section 2 and the
m2etis adapter. The model has to be instantiated for
each application to reflect the semantic properties of
the application’s event types, meaning each event type
used by the engine or the game has to be classified fol-
lowing the semantic model. The m2etis adapter com-
ponent provides the API to the other subsystems of
the application engine. This API allows messaging
and provides replicas or master copies of game states
as required by the engine reference architecture. The
adapter moreover transforms the states and messages
of the API (states and events) to an internal event for-
mat which allows the m2etis optimizer to calculate the
optimized delivery properties.

m2etis optimizer In this component the internal event
representation is used to generate and operate opti-
mized Publish/Subscribe multicast trees. Based on the
semantic model and the internal event representation
the dissemination optimizer deduces with the help of
semantic application information, the recipients and
the dissemination strategy for each event type. This
happens based on the catalogue, provided by the op-
timization manager, which holds all optimization al-
gorithms and their corresponding costs. Following a
cost model, the dissemination optimizer is able to cal-
culate the optimal algorithm of a certain event type.
Based on this decision, the corresponding channel is
created. The resulting optimized dissemination struc-
ture is managed by the channel manager and the sub-
scription manager, which controls all moving subscrip-
tions and the resulting changes in the dissemination
structure as well as the dissemination of events itself.

Tapestry Based on the managed dissemination structures
for each type, the channel manager is able to route each
occurring event following to the associated algorithm
and recipients. The routing itself is conducted by an
underlying P2P Overlay-Network like Pastry [22] or
Chimera [21], an advanced Tapestry implementation.

The challenges that arise from the depicted architecture
are on the one hand the automation of the transformation
steps to minimize the manual work. We aim for two inputs
to deduce the optimized Publish/Subscribe multicast trees:
A semantic model of the event types and a list of optimiza-
tion algorithms with their costs. Whereby the algorithms
and costs must not be adapted for every application, as a
catalogue of supported algorithms is provided by the mid-
dleware. On the other hand the optimizer component with



Ph iAII t

Graphics

Physics
Engine

AI
Engine

Input
System

Graphics
Engine

Sound

Game Engine API

m
e 
Co

re

Engine

G
am

m2etis Adapter

m2etis‐transformerm2etis Semantic Model

e 
Sy
st
em

m2etis‐optimizer

I6 m2etis PubSub SystemDissemination Optimizer Cost Model

AlgorithmsTrees

Optimization
Manager

M
es
sa
ge

p

Subscription
Manager

Channel Manager

Algorithms

M l i T M l i T M l i T
Tapestry

g
Multicast Tree Multicast Tree Multicast Tree

Figure 2: m2etis architecture

its cost model and formal reasoner is the other challenge to
address.

5. CONCLUSION AND FUTURE WORK
Due to the huge number of players, MMVEs pose new

challenges regarding the scalability of the underlying archi-
tecture. New holistic ways for minimizing the communi-
cation effort have to be found. We introduce the m2etis
project which aims for a generic architecture to optimize the
amount of messages required in an MMVE without hamper-
ing quality requirements. In this paper, we proposed a multi-
dimensional classification schema and outlined optimization
strategies based on existing approaches.

We are currently implementing a prototype for the de-
scribed architecture. The focus lies on the realization of a
publish/subscribe system, capable of handling the required
different event dissemination strategies and algorithms. The
challenge is handling moving spatial subscriptions in the
publish/subscribe component. To enable a generic exten-
sible architecture which is able to integrate arbitrary op-
timization algorithms, a generalization of the optimization
strategies is required. Moreover a formal semantic model
based on the proposed classification has to be developed.
Complementing it with a cost model, enables an optimizer
component that allows automated customized optimization
for application-specific requirements.

Existing approaches only cope with a subset of our identi-
fied dimensions, therefore our idea to compose different opti-
mization strategies based on our multidimensional semantic
classification poses a holistic approach. We understand the
work presented in this paper as a first step on the road to
generic event dissemination systems which are optimizable
based on the knowledge of application-driven event seman-
tics.

6. REFERENCES
[1] Reinhard Müller and Frank Mackenroth. German

Entertainment and Media Outlook: 2006-2010.
PriceWaterhouseCoopers (Report), October 2006.

[2] Walker White, Christoph Koch, Nitin Gupta,
Johannes Gehrke, and Alan Demers. Database
Research Opportunities in Computer Games. ACM
SIGMOD Record, 36(3):7–13, 2007.

[3] Max Skibinsky. Massive Multiplayer Game
Development 2, chapter 5 - The Quest for the Holy
Scale-Part 1: Large-Scale Computing, pages 339–355.
Game Development Series. Charles River Media, 2
edition, February 2005.

[4] Halldor Fannar, Victoria Coleman, Randy Breen, and
Brandon Van Slyke. The server technology of eve
online: How to cope with 300,000 players on one
server. Talk on GDC Austin, 2008.

[5] Shun-Yun Hu, Jui-Fa Chen, and Tsu-Han Chen. VON:
A Scalable Peer-to-Peer Network for Virtual
Environments. IEEE Network, 20(4):22–31, July 2006.

[6] Ashwin Bharambe, John R. Douceur, Jacob R. Lorch,
Thomas Moscibroda, Jeffrey Pang, Srinivasan Seshan,
and Xinyu Zhuang. Donnybrook: Enabling
Large-Scale, High-Speed, Peer-to-Peer Games.
SIGCOMM Comput. Commun. Rev. (CCR),
38(4):389–400, 2008.

[7] Ashwin Bharambe, Jeffrey Pang, and Srinivasan
Seshan. Colyseus: A Distributed Architecture for
Online Multiplayer Games. In 3rd Symposium on
Networked Systems Design & Implementation (NSDI),
pages 155–168, Berkeley, CA, USA, 2006. USENIX
Association.

[8] Kaiwen Zhang, Bettina Kemme, and Alexandre
Denault. Persistence in Massively Multiplayer Online
Games. In 7th ACM SIGCOMM Workshop on



Network and System Support for Games (NetGames),
pages 53–58, New York, NY, USA, 2008. ACM.

[9] Stefano Ferretti. A Synchronization Protocol For
Supporting Peer-to-Peer Multiplayer Online Games in
Overlay Networks. In 2nd International Conference on
Distributed Event-Based Systems (DEBS), pages
83–94, New York, NY, USA, 2008. ACM.

[10] Thomas Fischer and Richard Lenz. Event semantics in
event dissemination architectures for massive
multiuser virtual environments. In DEBS ’10:
Proceedings of the Fourth ACM International
Conference on Distributed Event-Based Systems, pages
93–94, New York, NY, USA, 2010. ACM.

[11] Jean S. Boulanger, Jörg Kienzle, and Clark Verbrugge.
Comparing Interest Management Algorithms for
Massively Multiplayer Games. In 5th ACM
SIGCOMM Workshop on Network and System
Support for Games (NetGames), New York, NY, USA,
2006. ACM. Article No. 6.

[12] David R. Jefferson. Virtual Time. ACM Transactions
on Programming Languages and Systems (TOPLAS),
7(3):404–425, July 1985.

[13] Rivka Ladin, Barbara Liskov, Liuba Shrira, and
Sanjay Ghemawat. Providing High Availability Using
Lazy Replication. ACM Transactions Computer
Systems, 10(4):360–391, 1992.

[14] B. Knutsson, Honghui Lu, Wei Xu, and B. Hopkins.
Peer-to-Peer Support for Massively Multiplayer
Games. In IEEE INFOCOM, volume 1, pages 96–107.
IEEE, 2004.

[15] Jens Müller and H. Sergei Gorlatc. Rokkatan: Scaling
an RTS Game Design to the Massively Multiplayer
Realm. ACM Computers in Entertainment (CIE),
4(3):1–14, 2006. Article No. 11.

[16] Sandeep Singhal and Michael Zyda. Networked Virtual
Environments: Design and Implementation.
Addison-Wesley Professional, New York, NY, USA,
1999.

[17] Patric Kabus, Wesley W. Terpstra, Mariano Cilia, and
Alejandro P. Buchmann. Addressing Cheating in
Distributed MMOGs. In 4th ACM SIGCOMM
Workshop on Network and System Support for Games
(NetGames), New York, NY, USA, 2005. ACM.
Article No. 6.

[18] Yi Lin, Bettina Kemme, Marta P. Martinez, and
Ricardo J. Peris. Applying Database Replication to
Multi-player Online Games. In 5th ACM SIGCOMM
Workshop on Network and System Support for Games
(NetGames), New York, NY, USA, 2006. ACM.
Article No. 15.

[19] Shinya Yamamoto, Yoshihiro Murata, Keiichi
Yasumoto, and Minoru Ito. A Distributed Event
Delivery Method with Load Balancing for MMORPG.
In 4th ACM SIGCOMM Workshop on Network and
System Support for Games (NetGames), New York,
NY, USA, 2005. ACM. Article No. 8.

[20] Thorsten Hampel, Thomas Bopp, and Robert Hinn. A
Peer-to-Peer Architecture for Massive Multiplayer
OnlineGames. In 5th ACM SIGCOMM Workshop on
Network and System Support for Games (NetGames),
New York, NY, USA, 2006. ACM. Article No. 48.

[21] Matthew S. Allen and Rame Alebouyeh. Chimera: A

Library for Structured Peer-to-peer Application
Development. Technical report, University of
California, Santa Barbara, 2006.

[22] Antony I. T. Rowstron and Peter Druschel. Pastry:
Scalable, Decentralized Object Location, and Routing
for Large-Scale Peer-to-Peer Systems. In 18th
IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), pages 329–350.
Springer-Verlag, 2001.


